KOGANEI

リニア磁気センサコントローラ ロングタイプ

ユーザーズマニュアル

Ver. 1.1

<目次>

第1章 リニア磁気センサ	ロングタイプ セン	ノサヘッド取り付け方法	• • • • • • • •	P.2
1. エアハンド			P.2	
2.直動シリンダ	• • • • • • • • • • • • • • • • • • • •		P.3	
第2章 スケーリング機能	の使い方	•••••••••••••••••••••••••••••••••••••••	••••••	P.4
第3章 シリンダ代表特性	<u> </u>	•••••	•••••	P.6

第1章 リニア磁気センサロングタイプ センサヘッド取り付け方法

1. エアハンド

対象: NHB□PG(L)、NHB□P(A)、NHB□S(L)、NHE1D、NHC1D、NHL1D

- ・上記対象機種は、全開から全閉までひとつのセンサヘッドで検出が可能です。
- ・ハンドを全閉または全開状態にし、コントローラの表示値が全閉時は表 1 の全閉欄に記載の値、全開時は表 1 の全開欄に記載の値となるようにセンサヘッドを設置してください(目安として表の数値±20 程度)。
- ・NHB□PG(L)8、NHB□P(A)6、NHL1D8 についてはセンサヘッド先端がセンサ取り付け溝の端に突き当たる位置に設置してください。

対象: AFDPG(L)

- ・全ストロークを検知することができませんの検出する位置に合わせてセンサヘッドを設置してください。
- ・有効範囲は弊社測定での min 値を記載していますが使用環境やシリンダの磁石のバラツキにより記載の有効範囲が 確保できない場合もありますので参考値として取り扱いください。

表1

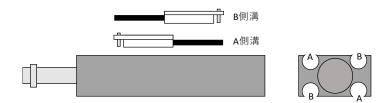
	4∀	CETA	全ストローク検知	センサ取付け位置目	安(±20)			
	径	SET2	または有効範囲mm	全閉 全開				
	8	18	0	溝端突き	当て			
	10	18	0	320	680			
	16	18	0	300	700			
NI IB - BC	20	18	0	230	770			
NHB□PG	25	18	0	250	750			
	32	18	0	200	800			
	40	16	0	120	880			
	50	16	0	100	900			
	8	18	0	溝端突き	当て			
NHB□PGL	10	18	0	150	850			
IVIID III GE	16	18	0	150	850			
	20	18	0	100	900			
	A6	18	0	溝端突き	当て			
	A10	18	0	380	620			
	A16	18	0	310	690			
	A20	18	0	250	750			
NHB□P(A)	A25	18	0	280	720			
NHBUP(A)	6	18	0	溝端突き	·当て			
	10	18	0	620	380			
1 [16	18	0	690	310			
	20	18	0	750	250			
	25	18	0	720	280			
	8	18	0	400	600			
	10	18	0	340	660			
NHB□S	16	18	0	310	690			
	20	18	0	270	730			
	25	18	0	300	700			
	12	18	0	50	950			
NHBDSL	16	18	0	70	930			
NHBDSL	20	18	0	40	960			
	25	8	0	50	950			
	16	18	0	340	660			
NHE1D	20	18	0	280	720			
	25	18	0	230	770			
	10	18	0	480	700			
NHC1D	16	18	0	380	620			
MICID	20	18	0	330	670			
	25	18	0	250	750			
	8	18	0	溝端突き	当て			
	10	18	0	650	350			
NHL1D	16	18	0	400	200			
	20	18	0	550	150			
	25	18	0	650	150			
	6	18	18					
	8	18	22	_				
AFDPG(L)	12	18	28	_				
AI Dru(L)	14	17	32	_				
	18	17	26	_				
	25	18	60	ļ				

2. 直動シリンダ

- ・直動タイプのシリンダについてはご使用のシリンダのストロークによっては全ストローク検知ができません。
- ・測定位置に合わせて設置ください。

<有効範囲>

・有効範囲は弊社測定での最小値を記載していますが使用環境やシリンダ磁石のバラツキにより記載の有効範囲が 確保できない場合もありますので参考値として取り扱いください。


表 2

名称	形式	センサ形式	4.5	6	8	10	12	16	20	25	32	40	50	63	80	100	125
マルチマウントシリンダ	BDAS	ZLL3	-	10	-	12	-	14	-	-	-	-	-	-	-	-	-
ノックシリンダ	NDAS	ZLL3	-	10	-	11	-	16	-	-	-	-	-	-	-	-	-
ペンシリンダ	PBDAS	ZLL3	-	8	-	9	-	11	-	-	-	-	-	-	-	-	-
ジグシリンダC	CDAS	ZLL1,ZLL2	-	11	9	10	12	14	20	22	18	22	23	26	30	28	-
ミニガイドスライダ	MGA	ZLL1,ZLL2	8	8	8	8	8	8	8	-	-	-	-	-	-	-	-
ミニガイドテーブル	MGT	ZLL1,ZLL2	-	8	8	8	8	8	8	-	-	-	-	-	-	-	-
ガイド付きジグシリンダ	SGDA	ZLL1,ZLL2	-	11	10	10	12	14	20	22	18	22	24	26	-	-	-
ツインロッドシリンダ	TBDA	ZLL1,ZLL2	-	-	-	9	-	9	10	10	10	-	-	-	-	-	-
ロッドスライダ	ARS	ZLL1,ZLL2	-	9	-	9	-	10	10	11	-	-	-	-	-	-	-
ハイマルチシリンダ (注1)	YMDAS	ZLL1,ZLL2	-	8	-	9	-	12	14	-	-	-	-	-	-	-	-
ベーシックシリンダ	BC	ZLL1,ZLL2	-	※埋め込	ふタイプ(ZLI	L1,ZLL2)では	対応不可の	ため別途問合	せ下さい	16	18	25	30	30	34	32	36

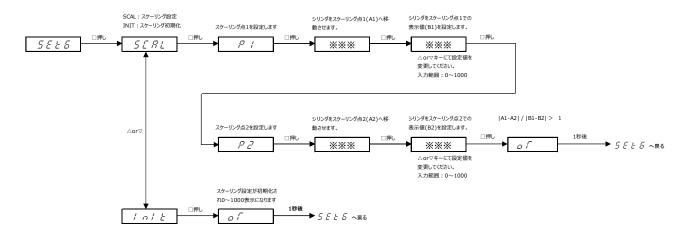
注1.取付溝に制限があります。

<YMDAS について>

本シリンダについてはセンサヘッドの取り付け向きにより使用可能な設置溝に制限があります。

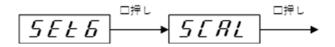
<ZLL3 の取付用センサホルダについて>

ZLL3 対応のシリンダを使用する場合、取り付けに別途センサホルダが必要になります。ご使用のシリンダに合わせたセンサホルダをご注文ください。


名称	シリンダ形式	センサホルダ注文形式					
ノックシリンダ	NDAS	C1-NDAS					
	BDAS6	C1-BDAS6					
マルチマウントシリンダ	BDAS10	C1-BDAS10					
	BDAS16	C1-BDAS16					
	PBDAS6	C1-PBDAS6					
ペンシリンダ	PBDAS10	C1-PBDAS10					
	PBDAS16	C1-PBDAS16					

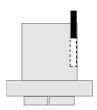
第2章 スケーリング機能

<スケーリング機能について>


スケーリング機能は有効範囲内の 2 点の表示値を設定することで表示のスケーリングを行います。 アナログ出力についてはスケーリング後も変更ありません。

<スケーリング設定 操作方法>

<設定例>


- \sim ハンドの全閉時の表示を 0、全開時の表示を 100 にする場合 \sim
 - ・ハンドにセンサヘッド取付方法に従って設置してください
 - ・上記のスケーリング設定 操作方法に従い、スケーリング点1の設定を始めます。

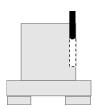
■スケーリング点1の設定

・ハンドを全閉にします

全閉時の値が表示されます

325 ※センサヘッド設置位置によって数値は変わります。

- □ボタンを押すと 表示値 325 が A1 となります。
- ・△or▽ボタンにて全閉状態での表示値を入力します(全閉を 0 にするので 0 に設定します)



□ボタンを押すと 入力した値で 0 が B1 となります。

■スケーリング点2の設定

・ハンドを全開にします

全開時の値が表示されます

655 ※センサヘッド設置位置によって数値は変わります。

□ボタンを押すと 表示値 655 が A2 となります。

・△or▽ボタンにて全閉状態での表示値を入力します(全閉を 100 にするので 100 に設定します)

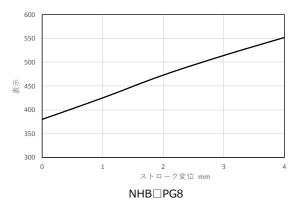
□ボタンを押すと 入力した値 100 が B2 となります。

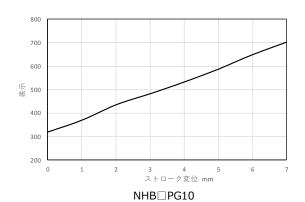
■スケーリング完了

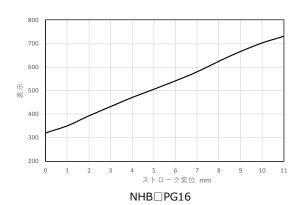
スケーリングが完了し全閉時表示が 0、全開時表示が 100 となります。

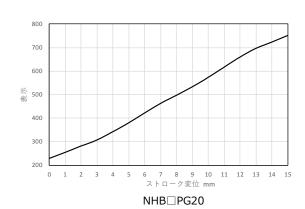
表示刻み1を維持するためには

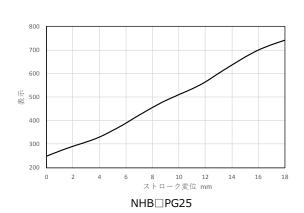
$$|A1 - A2| / |B1 - B2| > 1$$

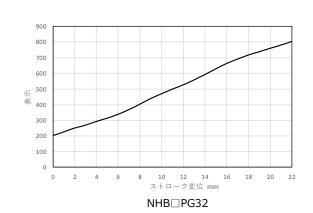

を満たすように設定してください。

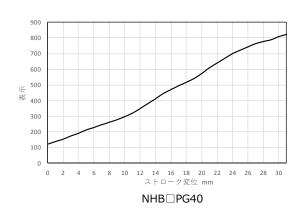

| A1 - A2 | / | B1 - B2 | > 0.5 まではエラー(E-1)は発生しませんが 表示刻み1が維持できない場合があります。

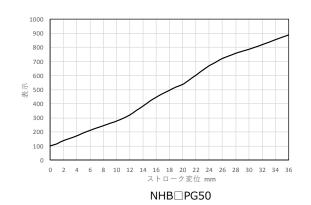

- ・スケーリング後のしきい値入力可能範囲は $0 \sim 1000$ ではなくスケーリング後の有効範囲両端の値となります。 そのため、スケーリング実施後は必ず再度しきい値の設定を行ってください。
- ・出荷時の 0~1000 表記に戻す場合は SET6 の INIT にてスケーリングの初期化を行ってください。

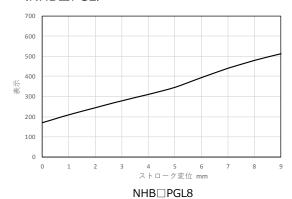

第3章 各シリンダ特性表

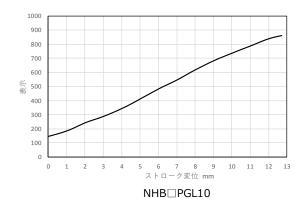

<NHB□PG>

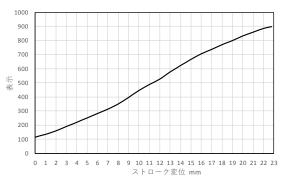




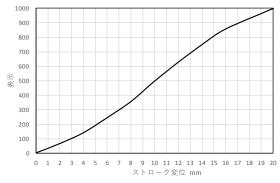


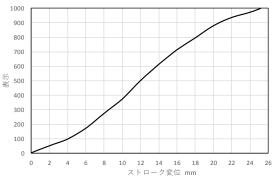


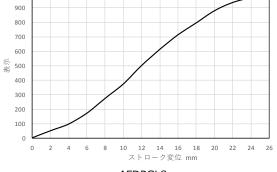




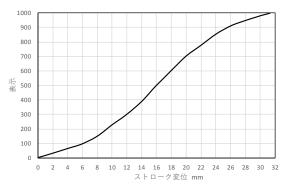
<NHB□PGL>

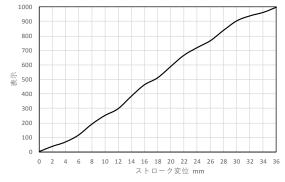




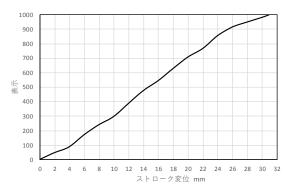

NHB□PGL20

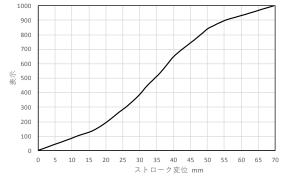
<AFDPGL>





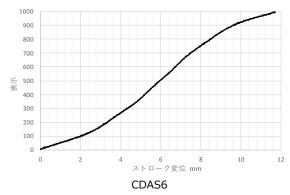
AFDPGL6

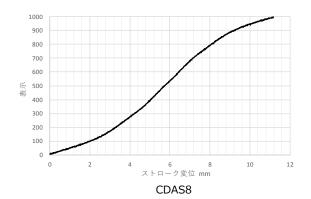


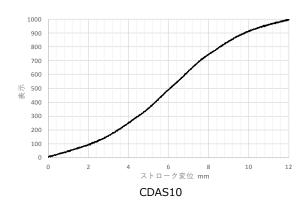


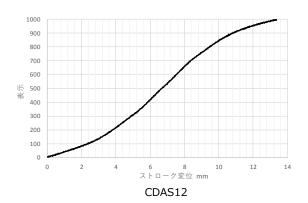
AFDPGL12

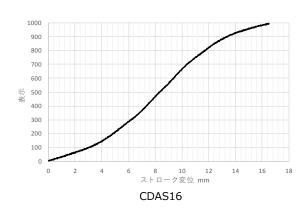
AFDPGL14

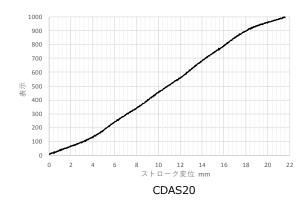


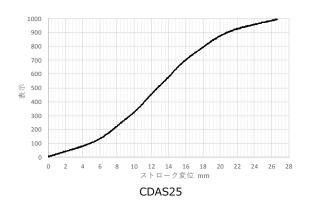


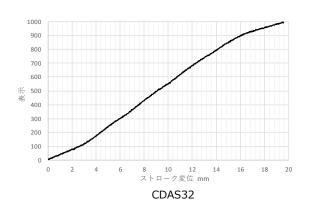

AFDPGL18

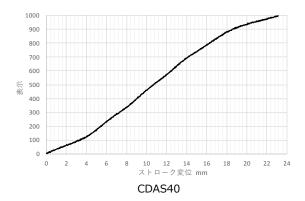

AFDPGL25

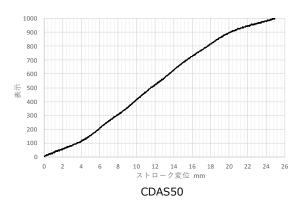


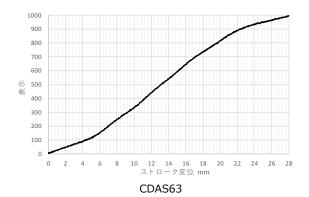


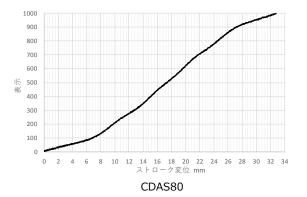


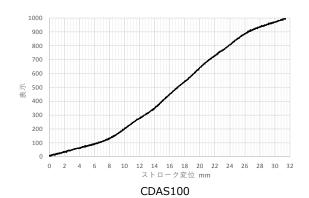


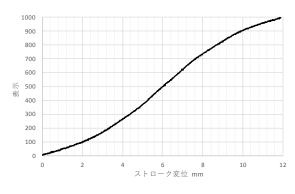


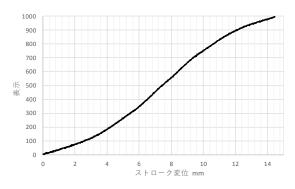


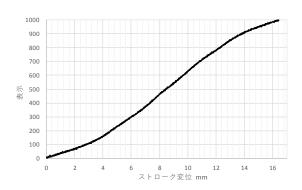


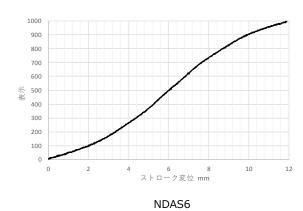


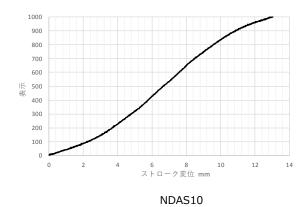


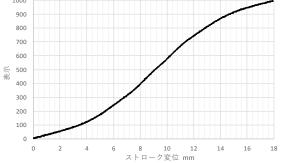




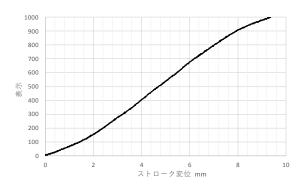

<BDAS>

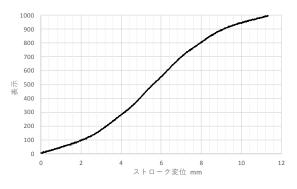

BDAS6



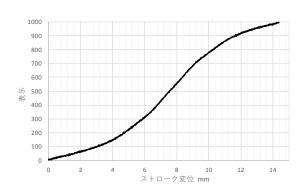

BDAS16

<NDAS>




1000

NDAS16


<PBDAS>

PBDAS6

PBDAS10

PBDAS16

※その他、詳細な仕様および注意事項に関してはカタログを参照してください。 ※製品に関するお問い合わせは最寄りの弊社営業所または、下記技術サービス センターへお問い合わせください。
株式会社コガネイ

技術サービスセンター TEL<042>383-7172

●記載されている仕様および外観は、改良のため予告なく変更することがあります。ご了承ください。 2017年1月31日 Ver.1.0 KG 2017年6月8日 Ver.1.1 KG @KOGANEI CORP. PRINTED IN JAPAN